9.4 Assignment

Find the maximized or minimized solution for the linear objective function subject to the given constraints.

1. Maximize P = 1.25x + 2.75y subject to $x \ge 0$, $y \ge 0$, $2x + 3y \le 12$, and $3y \ge 2x$.

2. Minimize C = 5x + 3y subject to $x \ge 0$, $y \ge 0$, $6x - 2y \le 6$, and $3x + 2y \le 12$.

4. Maximize and minimize Z = 4x + 2y subject to $x \ge 0$, $y \ge 0$, $x - 3y \ge -6$, $6x + 2y \ge 24$, and $x \le 9$.

5. A automobile company manufactures two products, hybrid car and SUV, on two assembly lines, I and II. It has been determined that the company will realize a profit of \$3000 on each hybrid car and a profit of \$2000 on each SUV. To manufacture a hybrid requires 10 hours on line I and 10 hours on machine II. To manufacture an SUV requires 30 hours on line I and 6 hours on line II. The amount of time line I can create one style of automotive is 180 hours and line II is required to run for at least 60 hours before a different automotive can begin assembly. How many units of each product should be produced to maximize the company's profit?

	Hybrid	SUV	Time Required
Line I			
Line II			
Profit			

