\qquad Date \qquad Hour \qquad

9.4 Assignment

Find the maximized or minimized solution for the linear objective function subject to the given constraints.

1. Maximize $P=1.25 x+2.75 y$ subject to $x \geq 0, y \geq 0,2 x+3 y \leq 12$, and $3 y \geq 2 x$.

2. Minimize $C=5 x+3 y$ subject to $x \geq 0, y \geq 0,6 x-2 y \leq 6$, and $3 x+2 y \leq 12$.

3. Maximize and minimize $C=3 x-2 y$ subject to $x \geq 0, y \geq 0$, $5 x+5 y \geq 10,-3 x+6 y \geq-36,10 x+10 y \leq 100$, and $-3 x+4 y \leq 12$.

4. Maximize and minimize $Z=4 x+2 y$ subject to $x \geq 0, y \geq 0$, $x-3 y \geq-6,6 x+2 y \geq 24$, and $x \leq 9$.

5. A automobile company manufactures two products, hybrid car and SUV, on two assembly lines, I and II. It has been determined that the company will realize a profit of $\$ 3000$ on each hybrid car and a profit of $\$ 2000$ on each SUV. To manufacture a hybrid requires 10 hours on line I and 10 hours on machine II. To manufacture an SUV requires 30 hours on line I and 6 hours on line II. The amount of time line I can create one style of automotive is 180 hours and line II is required to run for at least 60 hours before a different automotive can begin assembly. How many units of each product should be produced to maximize the company's profit?

	Hybrid	SUV	Time Required
Line I			
Line II			
Profit			

