\qquad

9.4 Graphical Solution of Linear Programming

FM.0.2 Use geometric and algebraic techniques to solve optimization problems with and without technology.
PS. 1 Make sense of problems and persevere in solving them.

Graphical Solution -

\qquad

Objective Function - \qquad
Constraint - \qquad

Ex. 1 Maximize $P=3 x+2 y$ subject to $2 x+3 y \leq 12,2 x+y \leq 8, x \geq 0, y \geq 0$.

Step 1: Graph the Inequalities

Step 2: List the corners of graph and substitute points into function.

Step 3: Determine the Maximum
\qquad

Ex. 1 Minimize $C=3 x+4 y$ subject to $x+y \geq 3, x+2 y \geq 4, x \geq 0, y \geq 0$.

Step 1: Graph the Inequalities

Step 2: List the corners of graph and substitute points into function.

Step 3: Determine the Minimum

Ex. 3 Ace Novelty wishes to produce two types of souvenirs: type A and type B. Each type-A souvenir will result in a profit of $\$ 1$, and each type-B souvenir will result in a profit of $\$ 1.20$. To manufacture a type-A souvenir requires 2 minutes on machine I and 1 minute on machine II. A type-B souvenir requires 1 minute on machine I and 3 minutes on machine II. There are 3 hours available on machine I and 5 hours available on machine II for processing the order. How many souvenirs of each type should Ace make in order to maximize its profit?

Let x be the number of type-A souvenirs sold and let y be the number of type-B souvenirs sold. Graph the inequalities and find the maximum profit.
$P=x+1.2 y$
$2 x+y \leq 180$
$x+3 y \leq 300$
$x \geq 0$
$y \geq 0$

