| Date | _ |
|------|---|
| Date | _ |

## 9.4 Graphical Solution of Linear Programming

FM.0.2 Use geometric and algebraic techniques to solve optimization problems with and without technology.PS.1 Make sense of problems and persevere in solving them.

| ( | Graphical Solution |
|---|--------------------|
| _ |                    |
| 0 | Objective Function |
| ( | Constraint         |

**Ex. 1** Maximize P = 3x + 2y subject to  $2x + 3y \le 12$ ,  $2x + y \le 8$ ,  $x \ge 0$ ,  $y \ge 0$ .

Step 1: Graph the Inequalities

<u>Step 2: List the corners of graph</u> and substitute points into function.





| Date |  |
|------|--|
|      |  |
|      |  |

**Ex. 1** Minimize C = 3x + 4y subject to  $x + y \ge 3$ ,  $x + 2y \ge 4$ ,  $x \ge 0$ ,  $y \ge 0$ .

Step 1: Graph the Inequalities

<u>Step 2: List the corners of graph</u> and substitute points into function.

| · · · · · · · · · · · · · · · ·              |         |                 |
|----------------------------------------------|---------|-----------------|
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         | <del>:</del>    |
|                                              | 1 1 1   |                 |
|                                              |         | ·····÷····÷···· |
|                                              |         |                 |
| - · · · · · · · · · · · · · · · · · · ·      |         |                 |
|                                              |         |                 |
|                                              |         | ·····           |
|                                              | 1. 1. 1 |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
| · · · · · · · · · · · · · · · · · ·          |         |                 |
|                                              | 1. 1. 1 |                 |
| - · · · · · · · · · · · · · · · · · · ·      |         |                 |
|                                              |         |                 |
| - · · · · · · · · · · · · · · · · · · ·      |         | ·····           |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         | <u>.</u>        |
|                                              |         |                 |
| - · · · · · · · · · · · · · · · · · · ·      |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
|                                              |         |                 |
| <u>_                                    </u> |         |                 |

Step 3: Determine the Minimum

**Ex. 3** Ace Novelty wishes to produce two types of souvenirs: type A and type B. Each type-A souvenir will result in a profit of \$1, and each type-B souvenir will result in a profit of \$1.20. To manufacture a type-A souvenir requires 2 minutes on machine I and 1 minute on machine II. A type-B souvenir requires 1 minute on machine I and 3 minutes on machine II. There are 3 hours available on machine I and 5 hours available on machine II for processing the order. How many souvenirs of each type should Ace make in order to maximize its profit?

Let *x* be the number of type-A souvenirs sold and let *y* be the number of type-B souvenirs sold. Graph the inequalities and find the maximum profit.

