Date	

9.1 Bin Packing

FM.0.1 Use bin-packing techniques to solve problems of optimizing resource usage.

of weight capacity W into which weights w_1	
can be packed without exceeding the capaci	ity of the bins.
Next-fit (NF) -	
First-fit (FF)	
Worst-fit (WF)	
Next-fit Decreasing (NFD)	
First-fit Decreasing (FFD)	
Worst-fit Decreasing (WFD)	

Date

Example Suppose you plan to build a wall system for your books, CDs, DVDs, and fish tank. It requires 24 wooden shelves of various lengths: 6, 6, 5, 5, 5, 4, 4, 4, 4, 2, 2, 2, 2, 3, 3, 7, 7, 5, 5, 8, 8, 4, 4, and 5 feet. The lumberyard, however, sells wood only in boards of length 9 feet. If each board costs \$8, what is the minimum cost to buy sufficient wood for this wall system?

Next-fit (NF)

First-fit (FF)

Worst-fit (WF)

Next-fit Decreasing (NFD)

First-fit Decreasing (FFD)

Worst-fit Decreasing (WFD)