Geometry \qquad

7.4 Parallel Lines and Proportional Parts

Triangle Proportionality Theorem

Ex 1:
In $\triangle A B D, \overline{A B} \| \overline{E C}, C B=18, D C=6$, and $E A=27$.
Find $D E$.

Converse of the Triangle Proportionality Theorem

Ex 2:

In $\triangle E F G, E G=24, E H=8$, and $L G$ is twice $F L$.
Determine whether $\overline{\boldsymbol{H L}} l l \overline{\boldsymbol{E F}}$. Justify your answer.

\Rightarrow a segment with endpoints that are midpoints of two sides of the triangle

Triangle Midsegment Theorem

If B and D are midpoints of $\overline{A C}$ and $\overline{E C}$ respectively, then

Ex 3:

In the figure, $\overline{D E}$ and $\overline{E F}$ are midsegments of $\triangle A B C$. Find each measure.
a. $A B$
b. $F E$
c. $m \angle A F E$

Proportional Parts of Parallel Lines

If $\overleftrightarrow{A D}\|\overleftrightarrow{E B}\| \overleftrightarrow{F C}$, then \qquad .

Ex 4:

In Lake Creek, the lots on which houses are to be built are laid out as shown. Using the distances shown, find w.

Congruent Parts of Parallel Lines

If $\overleftrightarrow{A D}\|\overleftrightarrow{E B}\| \overleftrightarrow{F C}$ and $\overline{A B} \cong \overline{B C}$, then
\qquad .

Ex 5:
Find x and y.

