\qquad

6.5 Rhombi and Squares

G.QP. 2 Prove that given quadrilaterals are parallelograms, rhombuses, rectangles, squares, or trapezoids. Include coordinate proofs in the coordinate plane.
G.LP. 4 Develop geometric proofs, including direct proofs, indirect proofs, proofs by contradiction and proofs involving coordinate geometry, using two-column, paragraphs, and flow charts formats.

Rhombus \rightarrow a \qquad with all four sides \qquad
Diagram:
Example:

Theorem	Examples
If a parallelogram is a rhombus, then the diagonals are	
If the diagonals of a parallelogram are perpendicular, then the parallelogram is a	
If a parallelogram is a then the diagonals bisect each pair of opposite angles.	
If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a	

Ex 1:

Use rhombus $B C D E$ and the given information to find the value of each variable.
a. If $m \angle 3=2 y+26$, find y.
b. Find $m \angle C E D$ if $m \angle B C D=38^{\circ}$.

Square \rightarrow a \qquad that is both a \qquad and a \qquad
Diagram:
Example:

Ex 2:
Determine whether parallelogram $W X Y Z$ with vertices $W(1,10), X(9,1), Y(0,-7)$ and $Z(-8,2)$ is a rhombus, a rectangle, or a square. List all that apply. Justify your answer.

Ex 3:

A square picture window with a sun catcher is shown.
Is the top of the sun catcher in the center of the window? Justify your answer.

Ex 4: PROOF
Given: $L M N P$ is a parallelogram, $\angle 1 \cong \angle 2, \angle 5 \cong \angle 6$
Prove: $\quad L M N P$ is a rhombus

Statements	Reasons

PROPERTIES	
Rhombi	Squares
A rhombus has all of the properties of a parallelogram. All sides are \qquad Diagonals are \qquad Diagonals \qquad the angles of the rhombus.	A square has all the properties of a : - \qquad - \qquad - \qquad

CONCEPT SUMMARY

