Date \qquad

6.1 Angles of Polygons

G.QP. 3 Find the measures of interior and exterior angles of polygons. Explain and justify the method used.

Diagonal \rightarrow a segment that \qquad any two

Diagonals form \qquad when they are connected to nonconsecutive vertices.

Convex Polygon	Number of Sides	Number of Triangles	Sum of Angle Measures
Triangle	3	1	$(1 \cdot 180)$ or 180
Quadrilateral	4	2	$(2 \cdot 180)$ or 360
Pentagon	5	3	$(3 \cdot 180)$ or 540
Hexagon	6	4	$(4 \cdot 180)$ or 720
Heptagon	7	5	$(5 \cdot 180)$ or 900
Octagon	8	6	$(6 \cdot 180)$ or 1080

Polygon Interior Angles Sum Theorem

The sum of the \qquad angles of an n-sided \qquad polygon is as follows:
$\mathbf{S}=$

$$
\begin{aligned}
m \angle A+m \angle B+m \angle C+m \angle D+m \angle E & =180(5-2) \\
& =180(3) \\
& =540^{\circ}
\end{aligned}
$$

Ex 1:

The Pentagon in Washington, D.C., Is shaped like a regular pentagon. Find the sum of the measures of the interior angles of the largest pentagon-shaped section of the Pentagon building.

Ex 2:

The measure of an interior angle of a regular polygon is 135 . Find the number of sides of the polygon.

Ex 3:

Find the measure of each interior angle of polygon $A B C D E$.

Polygon Exterior Angles Sum Theorem

The sum of the \qquad angle measures of a \qquad polygon,
one angle at each vertex, is 360°.
$m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 5+m \angle 6=$

Ex 4:

Find the measures of an exterior angle and an interior angle of convex regular nonagon ABCDEFGHI.

Ex 5:

Find the value of x in the diagram.

