10.3 Arcs and Chords G.CI.3 Identify and describe relationships among inscribed angles, radii and chords. # Theorem 10.2 In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent. Symbols: If $$\overline{AB} \cong \overline{CD}$$, then $\widehat{AB} \cong \widehat{CD}$. If $\widehat{AB} \cong \widehat{CD}$, then $\overline{AB} \cong \overline{CD}$. ### Ex 1: In \bigcirc H, $\widehat{RS} \cong \widehat{TV}$. Find RS. $$5x-9=2x+3$$ $-2x$ $-2x$ $3x-9=3$ $+9$ $$\frac{3x=12}{3}$$ #### Theorem 10.3 In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chords the chord and its arc. Example: If $\overline{BA} \perp \overline{TV}$, then $\overline{UT} \cong \overline{UV}$ and $\widehat{AT} \cong \widehat{AV}$. #### Ex 2: In \odot S, find PR. ## Ex 3: In circle W, the radius is 10 cm, HJ = 8 cm and $m\widehat{HL}$ = 53°. Radius \overline{WL} is perpendicular to chord \overline{HK} . Find each measure. Round to the nearest hundredth, if necessary. a) $m\widehat{MK}$ $$\frac{(w)^{2} + 64 = 1800}{-64 - 64}$$ $$\sqrt{(w)^{2} = \sqrt{3} 6}$$ Remember