10.3 Arcs and Chords

G.CI.3 Identify and describe relationships among inscribed angles, radii and chords.

Theorem 10.2

In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

Symbols: If
$$\overline{AB} \cong \overline{CD}$$
, then $\widehat{AB} \cong \widehat{CD}$.
If $\widehat{AB} \cong \widehat{CD}$, then $\overline{AB} \cong \overline{CD}$.

Ex 1:

In \bigcirc H, $\widehat{RS} \cong \widehat{TV}$. Find RS.

$$5x-9=2x+3$$
 $-2x$
 $-2x$
 $3x-9=3$
 $+9$

$$\frac{3x=12}{3}$$

Theorem 10.3

In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chords the chord and its arc.

Example: If $\overline{BA} \perp \overline{TV}$, then $\overline{UT} \cong \overline{UV}$ and $\widehat{AT} \cong \widehat{AV}$.

Ex 2:

In \odot S, find PR.

Ex 3:

In circle W, the radius is 10 cm, HJ = 8 cm and $m\widehat{HL}$ = 53°. Radius \overline{WL} is perpendicular to chord \overline{HK} . Find each measure. Round to the nearest hundredth, if necessary.

a) $m\widehat{MK}$

$$\frac{(w)^{2} + 64 = 1800}{-64 - 64}$$

$$\sqrt{(w)^{2} = \sqrt{3} 6}$$

Remember

